The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure.

نویسندگان

  • Ngayee J Law
  • Jeremy M G Taylor
  • Howard Sandler
چکیده

In this paper we present an extension of cure models: to incorporate a longitudinal disease progression marker. The model is motivated by studies of patients with prostate cancer undergoing radiation therapy. The patients are followed until recurrence of the prostate cancer or censoring, with the PSA marker measured intermittently. Some patients are cured by the treatment and are immune from recurrence. A joint-cure model is developed for this type of data, in which the longitudinal marker and the failure time process are modeled jointly, with a fraction of patients assumed to be immune from the endpoint. A hierarchical nonlinear mixed-effects model is assumed for the marker and a time-dependent Cox proportional hazards model is used to model the time to endpoint. The probability of cure is modeled by a logistic link. The parameters are estimated using a Monte Carlo EM algorithm. Importance sampling with an adaptively chosen t-distribution and variable Monte Carlo sample size is used. We apply the method to data from prostate cancer and perform a simulation study. We show that by incorporating the longitudinal disease progression marker into the cure model, we obtain parameter estimates with better statistical properties. The classification of the censored patients into the cure group and the susceptible group based on the estimated conditional recurrence probability from the joint-cure model has a higher sensitivity and specificity, and a lower misclassification probability compared with the standard cure model. The addition of the longitudinal data has the effect of reducing the impact of the identifiability problems in a standard cure model and can help overcome biases due to informative censoring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

برآورد تابع بقای شرطی زمان شکست به‌شرط یک متغیر کمکی زمان‌متغیر با مشاهدات سانسورشده‌ی بازه‌ای

In this paper, we propose an approach for the nonparametric estimation of the conditional survival function of a time to failure‎ ‎given a time-varying covariate under interval-censoring for the failure time. Our strategy consists in‎ ‎modeling the covariate path with a random effects model, ‎as is done in the degradation and joint longitudinal and survival data modeling&lrm...

متن کامل

Failure Process Modeling with Censored Data in Accelerated Life Tests

Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...

متن کامل

پیش بینی روند نارسایی کلیه در بیماران با اختلال عملکرد مزمن کلیه پیوندی

Background & Objective: Clinically Chronic Allograft Dysfunction (CAD) is characterized by a progressive decline in Glomerular Filtration Rate (GFR) over time, the pattern of disease progression determined by the five-stage model. In this paper, we used Erlang and Hypo-exponential distributions as Phase- Type distributions to describe hazard of kidney failure at over time in RTR with CAD. Me...

متن کامل

Numerical Modeling of Mold Filling and Curing in Non-Isothermal RTM Process (RESEARCH NOTE)

Resin Transfer Molding (RTM) is a composite manufacturing process. A preformed fiber is placed in a closed mold and a viscous resin is injected into the mold. In this paper, a model is developed to predict the flow pattern, extent of reaction and temperature change during filling and curing in a thin rectangular mold. A numerical simulation is presented to predict the free surface and its inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biostatistics

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2002